martes, 27 de marzo de 2012

MODELOS :D!

PENTANO

ALDEHÍDO

ÉTER

ESTER

AC.CARBOXILICO

2 METIL 1 PENTENO

4METIL OCTANO

2PENTILO

4 METIL 1 PENTILO

CETONA

ALCOHOL

miércoles, 21 de marzo de 2012

GRUPOS FUNCIONALES!

ALCOHOLES.
a aquellos compuestos químicos orgánicos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente a un átomo de carbono. Si contienen varios grupos hidroxilos se denominan polialcoholes. Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo. A nivel del lenguaje popular se utiliza para indicar comúnmente una bebida alcohólica, que presenta etanol, con formula química CH3CH2OH. Propiedades generales Los alcoholes suelen ser líquidos incoloros de olor característico, solubles en el agua en proporción variable y menos densos que ella. Al aumentar la masa molecular, aumentan sus puntos de fusión y ebullición, pudiendo ser sólidos a temperatura ambiente (p.e. el pentaerititrol funde a 260 °C). A diferencia de los alcanos de los que derivan, el grupo funcional hidroxilo permite que la molécula sea soluble en agua debido a la similitud del grupo hidroxilo con la molécula de agua y le permite formar enlaces de hidrógeno. La solubilidad de la molécula depende del tamaño y forma de la cadena alquílica, ya que a medida que la cadena alquílica sea más larga y más voluminosa, la molécula tenderá a parecerse más a un hidrocarburo y menos a la molécula de agua, por lo que su solubilidad será mayor en disolventes apolares, y menor en disolventes polares. Algunos alcoholes (principalmente polihidroxílicos y con anillos aromáticos) tienen una densidad mayor que la del agua. El hecho de que el grupo hidroxilo pueda formar enlaces de hidrógeno también afecta a los puntos de fusión y ebullición de los alcoholes. A pesar de que el enlace de hidrógeno que se forma sea muy débil en comparación con otros tipos de enlaces, se forman en gran número entre las moléculas, configurando una red colectiva que dificulta que las moléculas puedan escapar del estado en el que se encuentren (sólido o líquido), aumentando así sus puntos de fusión y ebullición en comparación con sus alcanos correspondientes. Además, ambos puntos suelen estar muy separados, por lo que se emplean frecuentemente como componentes de mezclas anticongelantes. Por ejemplo, el 1,2-etanodiol tiene un punto de fusión de -16 °C y un punto de ebullición de 197 °C. [editar]Propiedades químicas de los alcoholes Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua. Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a un carbono terciario, éste será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez éste sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática). Por otro lado, el oxígeno posee 2 pares electrónicos no compartidos por lo que el hidroxilo podría protonarse, aunque en la práctica esto conduce a una base muy débil, por lo que para que este proceso ocurra, es necesario enfrentar al alcohol con un ácido muy fuerte.

 ALDEHIDOS Los aldehídos son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminación -ol por -al : Es decir, el grupo carbonilo H-C=O está unido a un solo radical orgánico. Se pueden obtener a partir de la oxidación suave de los alcoholes primarios. Esto se puede llevar a cabo calentando el alcohol en una disolución ácida de dicromato de potasio (también hay otros métodos en los que se emplea Cr en el estado de oxidación +6). El dicromato se reduce a Cr3+ (de color verde). También mediante la oxidación de Swern, en la que se emplea sulfóxido de dimetilo, (Me)2SO, dicloruro de oxalilo, (CO)2Cl2, y una base. Propiedades físicas La doble unión del grupo carbonilo son en parte covalentes y en parte iónicas dado que el grupo carbonilo está polarizado debido al fenómeno de resonancia. Los aldehídos con hidrógeno sobre un carbono sp³ en posición alfa al grupo carbonilo presentan isomería tautomérica.Los aldehídos se obtienen de la deshidratación de un alcohol primario, se deshidratan con permanganato de potasio, la reacción tiene que ser débil , las cetonas también se obtienen de la deshidratación de un alcohol , pero estas se obtienen de un alcohol secundario e igualmente son deshidratados como permanganato de potasio y se obtienen con una reacción débil , si la reacción del alcohol es fuerte el resultado será un ácido carboxílico. Propiedades químicas Se comportan como reductor, por oxidación el aldehído de ácidos con igual número de átomos de carbono. La reacción típica de los aldehídos y las cetonas es la adición nucleofílica.

 CETONAS. Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo unido a dos átomos de carbono, a diferencia de un aldehído, en donde el grupo carbonilo se encuentra unido al menos a un átomo de hidrógeno.1 Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal). El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno. El tener dos átomos de carbono unidos al grupo carbonilo, es lo que lo diferencia de los ácidos carboxílicos, aldehídos, ésteres. El doble enlace con el oxígeno, es lo que lo diferencia de los alcoholes y éteres. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo. Propiedades físicas Los compuestos carbonílicos presentan puntos de ebullición más bajos que los alcoholes de su mismo peso molecular. No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular. Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad. Propiedades químicas Al hallarse el grupo carbonilo en un carbono secundario son menos reactivas que los aldehídos. Solo pueden ser oxidadas por oxidantes fuertes como el permanganato de potasio dando como productos dos ácidos con menor número de átomos de carbono. Por reducción dan alcoholes secundarios. No reaccionan con el reactivo de Tollens para dar el espejo de plata como los aldehídos, lo que se utiliza para diferenciarlos. Tampoco reaccionan con los reactivos de Fehling y Schiff.

 ETERES. En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios: ROH + HOR' → ROR' + H2O Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH. RO- + R'X → ROR' + X- Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos. Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas. El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes. Los dos pares de electrones no enlazantes del oxígeno pueden interaccionar con otros átomos, actuando de esta forma los éteres como ligandos, formando complejos. Un ejemplo importante es el de los éteres corona, que pueden interaccionar selectivamente con cationes de elementos alcalinos o, en menor medida, alcalinotérreos. 

 ESTERES Los ésteres son compuestos orgánicos derivados de ácidos orgánicos o inorganicos oxigenados en los cuales uno o más protones son sustituidos por grupos orgánicos alquilo (simbolizados por R'). Etimológicamente, la palabra "éster" proviene del alemán Essig-Äther (éter de vinagre), como se llamaba antiguamente al acetato de etilo.1 En los ésteres más comunes el ácido en cuestión es un ácido carboxílico. Por ejemplo, si el ácido es el ácido acético, el éster es denominado como acetato. Los ésteres también se pueden formar con ácidos inorgánicos, como el ácido carbónico (origina ésteres carbónicos), el ácido fosfórico (ésteres fosfóricos) o el ácido sulfúrico. Por ejemplo, el sulfato de dimetilo es un éster, a veces llamado "éster dimetílico del ácido sulfúrico". PROPIEDADES FISICAS Los ésteres pueden participar en los enlaces de hidrógeno como aceptadores, pero no pueden participar como donadores en este tipo de enlaces, a diferencia de los alcoholes de los que derivan. Esta capacidad de participar en los enlaces de hidrógeno les convierte en más hidrosolubles que los hidrocarburos de los que derivan. Pero las ilimitaciones de sus enlaces de hidrógeno los hace más hidrofóbicos que los alcoholes o ácidos de los que derivan. Esta falta de capacidad de actuar como donador de enlace de hidrógeno ocasiona el que no pueda formar enlaces de hidrógeno entre moléculas de ésteres, lo que los hace más volátiles que un ácido o alcohol de similar peso molecular. Muchos ésteres tienen un aroma característico, lo que hace que se utilicen ampliamente como sabores y fragancias artificiales. Por ejemplo: Acetato de 2 Etil Hexilo: olor a dulzón suave butanoato de metilo: olor a Piña salicilato de metilo (aceite de siempreverde o menta): olor de las pomadas Germolene™ y Ralgex™ (Reino Unido) octanoato de heptilo: olor a frambuesa etanoato de isopentilo: olor a plátano pentanoato de pentilo: olor a manzana butanoato de pentilo: olor a pera o a albaricoque etanoato de octilo: olor a naranja. PROPIEDADES QUIMICAS. En las reacciones de los ésteres, la cadena se rompe siempre en un enlace sencillo, ya sea entre el oxígeno y el alcohol o R, ya sea entre el oxígeno y el grupo R-CO-, eliminando así el alcohol o uno de sus derivados. La saponificación de los ésteres, llamada así por su analogía con la formación de jabones, es la reacción inversa a la esterificación. Los ésteres se hidrogenan más fácilmente que los ácidos, empleándose generalmente el éster etílico tratado con una mezcla de sodio y alcohol (Reducción de Bouveault-Blanc). El hidruro de litio y aluminio reduce ésteres de ácidos carboxílicos para dar 2 equivalentes de alcohol.2 La reacción es de amplio espectro y se ha utilizado para reducir diversos ésteres. Las lactonas producen dioles. Existen diversos agentes reductores alternativos al hidruro de litio y aluminio como el DIBALH, el trietilborhidruro de litio o BH3–SiMe3 reflujado con THF.3 El dicloruro de titanoceno reduce los ésteres de ácidos carboxílicos hasta el alcano (RCH3)y el alcohol R-OH.4 El mecanismo probablemente se debe a la formación de un alqueno intermediario.

 ÁCIDO CARBOXILICO Los ácidos carboxílicos constituyen un grupo de compuestos que se caracterizan porque poseen un grupo funcional llamado grupo carboxilo o grupo carboxi (–COOH); se produce cuando coinciden sobre el mismo carbono un grupo hidroxilo (-OH) y carbonilo (C=O). Se puede representar como COOH ó CO2H. Los derivados de los ácidos carboxílicos tienen como formula general R-COOH. Tiene propiedades ácidas; los dos átomos de oxígeno son electronegativos y tienden a atraer a los electrones del átomo de hidrógeno del grupo hidroxilo con lo que se debilita el enlace, produciéndose en ciertas condiciones, una ruptura heterolítica cediendo el correspondiente protón o hidrón, H+, y quedando el resto de la molécula con carga -1 debido al electrón que ha perdido el átomo de hidrógeno, por lo que la molécula queda como R-COO-. Además, en este anión, la carga negativa se distribuye (se deslocaliza) simétricamente entre los dos átomos de oxígeno, de forma que los enlaces carbono-oxígeno adquieren un carácter de enlace parcialmente doble. Generalmente los ácidos carboxílicos son ácidos débiles, con sólo un 1% de sus moléculas disociadas para dar los correspondientes iones, a temperatura ambiente y en disolución acuosa. Pero sí son más ácidos que otros, en los que no se produce esa deslocalización electrónica, como por ejemplo los alcoholes. Esto se debe a que la estabilización por resonancia o deslocalización electrónica, provoca que la base conjugada del ácido sea más estable que la base conjugada del alcohol y por lo tanto, la concentración de protones provenientes de la disociación del ácido carboxílico sea mayor a la concentración de aquellos protones provenientes del alcohol; hecho que se verifica experimentalmente por sus valores relativos menores de pKa. El ion resultante, R-COOH-, se nombra con el sufijo "-ato".





http://www.textoscientificos.com/quimica/alcoholes 

http://www.quimicaorganica.org/aldehidos-y-cetonas/index.php
http://www.quimicaorganica.org/eteres-teoria/nomenclatura-eteres-epoxidos.html

lunes, 19 de marzo de 2012

SUSTANCIAS!

ETANOL. conocido como alcohol etílico, es un alcohol que se presenta en condiciones normales de presión y temperatura como un líquido incoloro e inflamable con un punto de ebullición de 78 °C.Su fórmula química es CH3-CH2-OH (C2H6O), principal producto de las bebidas alcohólicas como el vino (alrededor de un 13%), la cerveza(5%) o licores (hasta un 50%).
PROPIEDADES FÍSICAS
Estado de agregación: Líquido
 Apariencia Incoloro
 Densidad 789 kg/m3; 0,789 g/cm3
Masa molar 46,07 g/mol
Punto de fusión 158.9 K (-114.3 °C)
 Punto de ebullición 351.6 K (78.4 °C)
 Temperatura crítica 514 K ( °C)
 Viscosidad 1.074 mPa·s a 20 °C.
PROPIEDADES QUÍMICAS
 Acidez (pKa) 15,9
 Solubilidad en agua Miscible
ACETONA.
La acetona o propanona es un compuesto químico de fórmula química CH3(CO)CH3 del grupo de las cetonas que se encuentra naturalmente en el medio ambiente. A temperatura ambiente se presenta como un líquido incoloro de olor característico. Se evapora fácilmente, es inflamable y es soluble en agua. La acetona sintetizada se usa en la fabricación de plásticos, fibras, medicamentos y otros productos químicos, así como disolvente de otras sustancias químicas.
PROPIEDADES FISICAS
 Estado de agregación Líquido 
Apariencia Incoloro 
Densidad 790 kg/m3; 0,79 g/cm3
Masa molar 58,04 g/mol 
Punto de fusión 178.2 K (-94.9 °C) 
Punto de ebullición 329.4 K (56.3 °C) 
Viscosidad 0,32 cP a 20 °C (293 K)
 Índice de refracción 1.35900 (20 °C)
 PROPIEDADES QUIMICAS
 Solubilidad en agua Soluble. También puede disolverse en etanol, isopropanol y tolueno 
Momento dipolar 2,91 D

ÁCIDO ACÉTICO
se puede encontrar en forma de ion acetato. Éste es un ácido que se encuentra en el vinagre, siendo el principal responsable de su sabor y olor agrios. Su fórmula es CH3-COOH (C2H4O2). De acuerdo con la IUPAC se denomina sistemáticamente ácido etanoico.
PROPIEDADES FÍSICAS
Estado de agregación líquido
 Apariencia incoloro o cristales (no inodoro)
 Densidad 1049 kg/m3; 1,049 g/cm3
 Masa molar 60.05 g/mol
 Punto de fusión 290 K (16,85 °C)
Punto de ebullición 391,2 K (118,05 °C)
PROPIEDADES QUIMICAS
 Acidez (pKa) 4,76
 Momento dipolar 1,74 D
ETILENGLICOL
es un compuesto químico que pertenece al grupo de los dioles. El etilenglicol es un líquido transparente, incoloro, ligeramente espeso como el almíbar y leve sabor dulce, son por estas características organolépticas que se suele utilizar distintos colorantes para reconocerlo y asi disminuir las intoxicaciones por accidentes. A temperatura ambiente es poco volátil, pero puede existir en el aire en forma de vapor, el etilenglicol es inodoro pero tiene un sabor dulce. Se fabrica a partir de la hidratación del óxido de etileno (epóxido cancerígeno).
PROPIEDADES FISICAS
 Estado de agregación Líquido
 Apariencia Incoloro
Densidad 1.116 kg/m3; 1.116 g/cm3
Masa molar 62,068 g/mol
Punto de fusión 260 K (-13,15 °C)
 Punto de ebullición 470 K (196,85 °C)
Viscosidad 1.61 Pa1
PROPIEDADES QUIMICAS
Solubilidad en agua Miscible
GLUCOSA.
La glucosa es un monosacárido con fórmula molecular C6H12O6, la misma que la fructosa pero con diferente posición relativa de los grupos -OH y O=. Es una hexosa, es decir, que contiene 6 átomos de carbono, y es una aldosa, esto es, el grupo carbonilo está en el extremo de la molécula. Es una forma de azúcar que se encuentra libre en las frutas y en la miel. Su rendimiento energético es de 3,75 kilocalorías por cada gramo en condiciones estándar.
PROPIEDADES
 Densidad 1.54 g cm3 
Punto de fusión α-D-glucose: 146 °C β-D-glucose: 150 °C

www.quimicaorganica.org 

jueves, 15 de marzo de 2012

ISOMEROS Y HIDROCARBUROS.


La isomería es una propiedad de ciertos compuestos químicos que con igual fórmula molecular (fórmula química no desarrollada) es decir, iguales proporciones relativas de los átomosque conforman su molécula, presentan estructuras moleculares distintas y, por ello, diferentes propiedades. Dichos compuestos reciben la denominación de isómeros. Los isómeros son compuestos que tienen la misma fórmula molecular pero diferente fórmula estructural y, por tanto, diferentes propiedades. Por ejemplo, el alcohol etílico o etanol y el éter dimetílicoson isómeros cuya fórmula molecular es C2H6O.

Clasificación de los isómeros en Química orgánica.
Aunque este fenómeno es muy frecuente en Química orgánica, no es exclusiva de ésta pues también la presentan algunos compuestos inorgánicos, como los compuestos de los metales de transición.










DIAMANTE
 El diamante es uno de los alótropos del carbono mejor conocidos, cuya dureza y alta dispersión de la luz lo hacen útil para aplicaciones industriales y joyería. El diamante es el mineral natural más duro conocido, lo que lo convierte en un abrasivo excelente y le permite mantener su pulido y lustre extremadamente bien. No se conocen sustancias naturales que puedan rayar, o cortar, un diamante. El mercado para los diamantes de grado industrial opera de un modo muy diferente a su contraparte de grado gema. Los diamantes industriales son valuados principalmente por su dureza y conductividad térmica, haciendo muchas de las características gemología gemológicas del diamante, incluyendo claridad y color, principalmente irrelevantes. Esto ayuda a explicar por qué el 80% de los diamantes minados, inadecuados para uso como gemas y conocidos como bort, son destinados para uso industrial. Además de los diamantes minados, los diamantes sintéticos encontraron aplicaciones industriales casi inmediatamente después de su invención en la década de 1950; otros 600 millones de quilates (80000 kg) de diamantes sintéticos son producidos anualmente para uso industrial—casi cuatro veces la masa de diamantes naturales minados en el mismo período. El uso industrial dominante de los diamantes es en cortado, perforado (brocas de perforación), abrasión (cortadores con filo de diamante), y pulido. La mayoría de usos del diamante en estas tecnologías no requiere diamantes grandes; en efecto, la mayoría de diamantes que son de calidad de gema pueden encontrar un uso industrial. Los diamantes son insertados en puntas de taladros o hojas de sierras, o dispersadas en un polvo para su uso en lijas y aplicaciones de pulido. Algunas aplicaciones especializadas incluyen uso en laboratorios como contenedores para experimentos de alta presión (ver yunque de diamante), rodamientos de alta performance, y un uso limitado en ventanas especializadas. Con los avances continuos que se hacen en la producción de diamante sintético, algunas aplicaciones futuras están comenzando a ser factibles. Es objeto de mucha excitación el posible uso del diamante como un semiconductor apto para construir microchips, o el uso del diamante como un disipador en electrónica. Hay esfuerzos de investigación significativos en Japón, Europa, y los Estados Unidos para capitalizar el potencial ofrecido por las propiedades materiales únicas del diamante, combinadas con la calidad incrementada y la cantidad de suministro que cominza a hacerse disponible de parte de los fabricantes de diamantes síntéticos. Cada átomo de carbono en un diamante está unido covalentemente a otros cuatro átomos de carbono, dispuestos en un tetraedro. Estos tetraedros, juntos, forman una red tridimenional de anillos de carbono de seis miembros (similar al ciclohexano), en la conformación de silla, permitiendo que haya tensión de ángulo de enlace de cero. Esta red estable de enlaces covalentes y anillos hexagonales es la razón de que el diamante sea increíblemente duro.
GRAFITO
 El grafito (denominado así por Abraham Gottlob Werner en 1789, del griego γράφειν (graphein, "dibujar/escribir", por su uso en lápices) es uno de los alótropos más comunes del carbono. A diferencia del diamante, el grafito es un conductor eléctrico, y puede ser usado, por ejemplo, como material en los electrodos de una lámpara de arco eléctrico. El grafito tiene la distinción de ser la forma más estable de carbono a condiciones estándar. En consecuencia, es usado en termoquímica como el estado estándar para definir el calor de formación de los compuestos de carbono. El grafito es capaz de conducir la electricidad, debido a la deslocalización de los electrones π sobre y debajo de los planos de los átomos de carbono. Estos electrones tienen libertad de movimiento, por lo que son capaces de conducir la electricidad. Sin embargo, la electricidad es conducida sólo a los largo del plano de las capas. En el diamante, los cuatro electrones externos de cada átomo de carbono están 'localizados' entre los átomos en enlaces covalentes. El movimiento de los electrones está restringido, y el diamante no conduce corriente eléctrica. En el grafito, cada átomo de carbono usa sólo 3 de sus 4 electrones de los niveles de energía externos en enlaces covalentes a otros tres átomos de carbono en un plano. Cada átomo de carbono contribuye con un electrón a un sistema deslocalizado que es parte también del enlace químico. Los electrones deslocalizados son libres de moverse a través del plano. Por esta razón, el grafito conduce la electricidad a lo largo de los planos de los átomos de carbono, pero no conduce en una dirección a ángulos rectos al plano. El polvo de grafito es usado como un lubricante seco. Aunque puede pensarse que esta importante propiedad industrial es debida netamente al débil acoplamiento interlaminar entre las hojas en la estructura, en efecto, en un ambiente vacío (como en las tecnologías pasa uso en el espacio), el grafito resultó ser un lubricante muy pobre. Este hecho conduce al descubrimiento de que la lubricidad es debida al aire y agua adsorbidos entre las capas, a diferencia de otros lubricantes secos laminares, como el disulfuro de molibdeno. Estudios recientes sugieren que un efecto denominado superlubricidad puede también explicar este efecto. Cuando un gran número de defectos cristalográficos unen estos planos ntre sí, el grafito pierde sus propiedades lubricantes y se convierte en lo que es conocido como carbono pirolítico, un material muy útil en implantes que contactan sangre, tales como las válvulas cardíacas prostéticas. Los grafitos naturales y cristalinos no son usados frecuentemente en forma pura como materiales estructurales, debido a sus planos irregulares, fragilidad y propiedades mecánicas inconsistentes. En sus formas sintéticas vítreas puras (isotrópicas), el grafito pirolítico y la fibra de carbono, el grafito es un material extremadamente fuerte, resistente al calor (hasta 3000 °C), usado en escudos térmicos para las narices de los misiles, motores de cohetes sólidos, reactores de alta temperatura, zapatas de freno, y escobillas de motores eléctricos. Los grafitos intumescentes o expandibles son usados en sellos de fuego, ajustados alrededor del perímetro de una puerta de fuego. Durante un fuego, el grafito se entumece (expande y calcina) para resistir la penetración del fuego y evitar la difusión de los humos. Una temperatura típica de expansión inicial (SET) está entre 150 y 300 grados Celsius. Densidad: su gravedad espcífica es 2,3, lo que lo hace más ligero que el diamante. Efecto dl calor: es el alótropo más estable del carbono. A una temperatura de 2500 grados Celsius, puede ser transformado en diamante. A cerca de 700 grados Celsius, arde en oxígeno puro formando dióxido de carbono. Actividad química: es ligeramente más reactivo que el diamante. Esto es debido a que los reactantes son capaces de penetrar entre las capas hexagonales de átomos de carbono en el grafito. No es afectado por solventes ordinarios, ácidos diluidos, o álcalis fundidos. Sin embargo, el ácido crómico lo oxida a dióxido de carbono.

GRAFENO.
 Una sola capa de grafito, que alguna vez se creyó ser imposible, es denominada grafeno y tiene propiedades eléctricas, térmicas y físicas extraordinarias. Puede ser producido por epitaxia (deposición química de vapor) en una superficie aislante, o por exfoliación mecánica (pelado repetido). Sus aplicaciones pueden incluir reemplazar al silicio en dispositivos electrónicos de alto rendimiento.

CARBONO AMORFO. El carbono amorfo es el nombre usado para el carbono que no tiene una estructura cristalina. Como con todos los materiales vítreos, puede presentarse algún orden de corto alcance, pero no hay patrones de largo alcance de las posiciones atómicas. Aunque puede fabricarse carbono completamente amorfo, el carbono amorfo natural (como el hollín) realmente contiene cristales microscópicos de grafito,1 algunas veces diamante.2 A escala macroscópica, el carbono amorfo no tiene una estructura definida, puesto que consiste de pequeños cristales irregulares, pero a escala nanomicroscópica, puede verse que está hecho de átomos de carbono colocados regularmente. El carbón y el hollín o negro de carbón son llamados informalmente carbono amorfo. Sin embargo, son productos de la pirólisis, que no produce carbono amorfo verdadero bajo condiciones normales. La industria del carbón divide al carbón en varios grados, dependiendo de la cantidad de carbono presente en la muestra, comparada con la cantidad de impurezas. El grado más alto, antracita, es aproximadamente 90 por ciento carbono y 10% otros elementos. El carbón bituminoso es aproximadamente 75-90% carbono, y el lignito es el nombre del carbón que tiene alrededor de 55 por ciento de carbono. Buckminsterfulerenos Los buckminsterfulerenos, o usualmente abreviados como fulerenos, fueron descubiertos en 1985, en condiciones deliberadamente creadas en el laboratorio, por un equipo de científicos de la Rice University y la University of Sussex, tres de ellos fueron galardonados con el Premio Nóbel de Química de 1996. Recibieron el nombre por la similitud de su estructura alotrópica con las estructuras geodésicas diseñadas por el científico y arquitecto Richard Buckminster "Bucky" Fuller. Los fulerenos son moléculas de tamaños variados, compuestas en su totalidad de carbono, que toman la forman de una esfera hueca, elipsoide, o tubo. A principios del siglo veintiuno, las propiedades químicas y físicas de los fulerenos son aún objeto de estudio profundo, tanto en laboratorios de investigación pura y aplicada. En abril del 2003, los fulerenos fueron objeto de estudio por su potencial uso médico - al unir a antibióticos específicos a la estructura para apuntar a bacterias resistentes e incluso apuntar a ciertas células de cáncer, tales como el melanoma. En julio de 2010, un grupo de investigadores de la Universidad de Ontario Occidental, en Canadá, detectaron, con el telescopio Spitzer de la NASA, esas moléculas en una nube de polvo cósmico que rodeaba a una estrella distante, en el hemisferio sur de la constelación Ara, a 6.500 años luz de distancia. CARBONO VITREO El carbono vítreo es una clase de carbono no grafitizante, que es usado ampliamente como material para electrodos en electroquímica, así como en crisoles de alta temperatura, y como componente de algunos dispositivos prostéticos. Fue producido por trabajadores en los laboratorios de The General Electric Company, UK, a inicios de la década de 1960, usando celulosa como material inicial. Poco tiempo después, trabajadores japoneses produjeron un material similar a partir de resinas fenólicas. Fue producido por primera vez por Bernard Redfern a mediados de 1950, en los laboratorios de The Carborundum Company, en UK. Consiguió desarrollar una matriz de polímero para imitar una estructura de diamante, y descubrió una resina fenólica que, con preparación especial, la produciría sin ayuda de un catalizador. Se llenaron algunas patentes, algunas de las cuales fueron retiradas en el interés de la seguridad nacional. Las muestras de investigación originales de la resina y el producto aún existen. La preparación de carbono vítreo implica someter a los precursores orgánicos a una serie de tratamientos térmicos a temperaturas hasta de 3000 °C. A diferencia de muchos carbonos no grafitizantes, son impermeables a los gases, y son extremadamente inertes químicamente, especialmente aquellos preparados a muy altas temperaturas. Se ha demostrado que las velocidades de oxidación de ciertos carbonos vítreos en oxígeno, dióxido de carbono, o vapor de agua, son menores que las de cualquier otro carbono. También son altamente resistentes al ataque por ácidos. En consecuencia, mientras el grafito normal es reducido a un polvo por una mezcla de ácido sulfúrico y ácido nítrico a temperatura ambiente, el carbono vítreo no es afectado por tal tratamiento, incluso después de varios meses. NANOESPUMA DE CARBONO La nanoespuma de carbono es el quinto alótropo conocido del carbono, descubierto en 1997 por Andrei V. Rode y colaboradores en la Australian National University en Canberra. Consiste de un ensamblado de cúmulos de baja densidad de átomos de carbono, mantenidos en una red tridimensional difusa. Cada cúmulo es de aproximadamente 6 nm de ancho, y consiste de aproximadamente 4000 átomos de carbono, unidos en hojas similares a las del grafito, que tienen una curvatura negativa por la inclusión de heptágonos en el esquema regular hexagonal. Esto es el opuesto de lo que pasa en el caso de los buckminsterfulerenos, en el que las hojas de carbono reciben una curvatura positiva por la inclusión de pentágonos. La estructura a gran escala de la nanoespuma de carbono es similar a la de un aerogel, pero con el 1% de la densidad de los aerogeles de carbono anteriormente producidos - sólo unas pocas veces más la densidad del aire a nivel del mar. A diferencia de los aerogeles de carbono, la nanoespuma de carbono es un mal conductor eléctrico. Lonsdaleíta (diamante hexagonal) La lonsdaleíta es un alótropo hexagonal del alótropo de carbono diamante, que se cree se forma a partir del grafito presente en los meteoritos al impactar sobre la Tierra. El gran calor y tensión del impacto transforman el grafito en diamante, pero reteniendo la estructura cristalina hexagonal del grafito. El diamante hexagonal ha sido sintetizado en el laboratorio, mediante compresión y calentamiento del grafito, tanto mediante el uso de una prensa estática, o usando explosivos. Carbono acetilénico lineal (LAC) El carbono acetilénico lineal (LAC por sus siglas en inglés), también llamado carbino, es un alótropo del carbono que tiene la estructura química -(C≡C)n- como una cadena repetitiva.



miércoles, 14 de marzo de 2012

ALIMENTOS

NUTRICION:

La nutrición es principalmente el aprovechamiento de los nutrientes. Encargada del estudio y mantenimiento del equilibrio homeostático del organismo a nivel molecular y macro sistémico, garantizando que todos los eventos pisiológicos se efectúen de manera correcta, logrando una salud adecuada y previniendo enfermedades. Los procesos macrosistémicos están relacionados a la absorción, digestión, metabolismo y eliminación. Los procesos moleculares o microsistémicos están relacionados al equilibrio de elementos como enzimas, vitaminas, minerales,aminoácidos, glucosa, transportadores químicos, mediadores bioquímicos, hormonas etc.
La nutrición también es la ciencia que estudia la relación que existe entre los alimentos y la salud, especialmente en la determinación de una dieta.
 Es el proceso por el cual se obtienen los nutrientes del medio externo.

CARBONO:
El carbono es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica; se conocen cerca de 16 millones de compuestos de carbono, aumentando este número en unos 500.000 compuestos por año, y forma parte de todos los seres vivos conocidos. Forma el 0,2 % de la corteza terrestre. 

Propiedades físicas
Estado ordinarioSólido (no magnético)
Densidad2267 kg/m3
Punto de fusiónDiamante: 3823 K
Grafito: 3800 K
Punto de ebulliciónGrafito: 5100 K
Entalpía de vaporizaciónGrafito; sublima: 711 kJ/mol
Entalpía de fusiónGrafito; sublima: 105 kJ/mol
Propiedades quimicas
Nombre, símbolo,númeroCarbono, C, 6
Serie químicaNo metal
Grupo, período,bloque14, 2, p
Masa atómica12,0107(8) u
Configuración electrónica[He]2s22p2
Dureza Mohs1-2 (grafito)
10 (diamante)
Electrones por nivel2, 4


DIFERENTES ALOTROPOS.
Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafito, diamante,fullerenos, nanotubos y carbinos.
Una de las formas en que se encuentra el carbono es el grafito, que es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, su textura, fuerza y color son diferentes. Los diamantes naturales se forman en lugares donde el carbono ha sido sometido a grandes presiones y altas temperaturas. Los diamantes se pueden crear artificialmente, sometiendo el grafito a temperaturas y presiones muy altas. Su precio es menor al de los diamantes naturales, pero si se han elaborado adecuadamente tienen la misma fuerza, color y transparencia.
El 22 de marzo de 2004 se anunció el descubrimiento de una sexta forma alotrópica: las nanoespumas.
La forma amorfa es esencialmente grafito, pero no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín.

Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30% de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y ésta recristalizar en forma alfa al calentarse por encima de 1000 °C.A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp2 y el cuarto en el orbital p.

El orbital híbrido sp1 que forma enlaces covalentes sólo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp3, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que el silicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal.
A esta familia pertenecen también los nanotubos de carbono, que pueden describirse como capas de grafito enrolladas en forma cilíndrica y rematadas en sus extremos por hemiesferas (fulerenos), y que constituyen uno de los primeros productos industriales de la nanotecnología.Los fulerenos tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de forma esférica, elipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y geometría similar a un balón de fútbol, es especialmente estable. Los fulerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.

COMPUESTOS INORGÁNICOS.
El más importante óxido de carbono es el dióxido de carbono (CO2), un componente minoritario de la atmósfera terrestre (del orden del 0,04% en peso) producido y usado por los seres vivos . En el agua forma trazas de ácido carbónico (H2CO3) —las burbujas de muchos refrescos— pero, al igual que otros compuestos similares, es inestable, aunque a través de él pueden producirse iones carbonato estables por resonancia. Algunos minerales importantes, como la calcita, son carbonatos.
Los otros óxidos son el monóxido de carbono (CO) y el más raro subóxido de carbono (C3O2). El monóxido se forma durante la combustión incompleta de materias orgánicas y es incoloro e inodoro. Dado que la molécula de CO contiene un enlace triple, es muy polar, por lo que manifiesta una acusada tendencia a unirse a la hemoglobina, formando un nuevo compuesto muy peligroso denominado Carboxihemoglobina, impidiéndoselo al oxígeno, por lo que se dice que es un asfixiante de sustitución. El ion cianuro (CN), tiene una estructura similar y se comporta como los iones haluro.
Con metales, el carbono forma tanto carburos como acetiluros, ambos muy ácidos. A pesar de tener una electronegatividad alta, el carbono puede formar carburos covalentes como es el caso de carburo de silicio (SiC) cuyas propiedades se asemejan a las del diamante.

COMPUESTOS ORGANICOS
El carbono es singularmente adecuado para cumplir un papel central en los compuestos orgánicos, por el hecho de que es el átomo más liviano capaz de formar múltiples enlaces covalentes. A raíz de esta capacidad, el carbono puede combinarse con otros átomos de carbono y con átomos distintos. Una característica general de todos los compuestos orgánicos es que liberan energía cuando se oxidan. 
En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas: 

  • Glúcidos: Son compuestos orgánicos que tienen en su molécula carbono, hidrógeno y oxígeno. Estos dos últimos elementos suelen estar en la misma proporción que en el agua, es decir, existe el doble de hidrógeno que de oxígeno. De ahí que se les conozca con el nombre de hidratos de carbono o carbohidratos. Los carbohidratos son la fuente primaria de energía química para los sistemas vivos, y también son importantes componentes estructurales. Los más simples son los monosacáridos ("azúcares simples"). Los carbohidratos formados por dos monosacáridos reciben el nombre de disacáridos; si son tres los monosacáridos que forman la molécula tenemos un trisacárido, y así sucesivamente hasta obtener los llamados polisacáridos. Los glúcidos más importantes son la glucosa, la ribosa, la galactosa, la sacarosa, el almidón, el glucógeno o la celulosa.
  •  Lípidos: Están compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno. No responden a una estructura química común y sus propiedades biológicas son muy variadas, si bien tienen como característica principal el ser hidrofóbas o insolubles en agua y sí en solventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos) y la reguladora (esteroides). Algunos de los lípidos más importantes son los ácidos grasos, las grasas, los fosfolípidos o los esteroides. 
  • Proteínas: Son moléculas muy grandes compuestas de largas cadenas de aminoácidos, conocidas como cadenas polipeptícas. A partir de sólo veinte aminoácidos diferentes se puede sintetizar una inmensa variedad de diferentes tipos de moléculas proteínicas, cada una de las cuales cumple una función altamente específica en los sistemas vivos. De hecho, cada especie animal o vegetal es capaz de sintetizar sus propias proteínas, diferentes de las de otras especies, e incluso dentro de cada especie cada individuo sintetiza las suyas propias. Las proteínas desempeñan un papel fundamental para la vida. Son imprescindibles para el crecimiento del organismo y realizan una enorme cantidad de funciones diferentes, entre las que destacan: la estructural (colágeno y queratina), la reguladora (insulina y hormona del crecimiento), la transportadora (hemoglobina), la inmunológica (anticuerpos), la enzimática (sacarasa y pepsina), la contráctil (actina y miosina), la defensiva (trombina y fibrinógeno), etc. 
  • Ácidos nucleicos: son macromoléculas, polímeros formados por la repetición de monómeros llamados nucleótidos (que son cinco: la adenina, la guanina, la citosina, la timina y el uracilo). Los ácidos nucleicos forman largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes (de millones de nucleótidos de largo). Los ácidos nucleicos tienen una enorme importancia, ya que son los responsables de la biosíntesis de las proteínas. Existen dos tipos de ácidos nucleicos: el ácido ribonucleico (ARN) y el ácido desoxirribonucleico (ADN).
HIDROCARBUROS
Los hidrocarburos son, justamente, compuestos orgánicos que están formados solamente por la combinación de distintos átomos de Carbono junto con Hidrógeno, conformando una especie de armazón de átomos de Carbono uniéndose a los otros, en uniones químicas que pueden ser lineales, abiertas o ramificadas.

Clasificación de Hidrocarburos

La clasificación está basada en la estructura de los enlaces o uniones entre ambos átomos, dividiéndose en:
Hidrocarburos de cadena abierta:
  • Hidrocarburos saturados: No poseen enlaces dobles, triples o aromáticos, contando solo con múltiples enlaces individuales dispuestos en cadena. Comprende a los alcanos y parafinas.
  • Hidrocarburos no saturados: Poseen al menos un enlace doble (alquenos y olefinas), enlaces triples (alquinos o acetilénicos) entre los átomos de Carbono.
Hidrocarburos de cadena cerrada:
  • Ciclo alcanos: Cadenas cerradas de 3 a 8 moléculas de Carbono saturados o no saturados
  • Aromáticos: Poseen al menos un anillo aromático además de otros enlaces.
http://www.estudiantes.info/ciencias_naturales/biologia/alimentacion_nutricion/index.htm 
http://www.zonadiet.com/nutricion/hidratos.htm
http://quimica.scienceontheweb.net/alotropos.php
http://erenovable.com/2011/02/28/hidrocarburos/